人工智能促进新质生产力发展的路径——基于动态QCA的分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


The Path of Artificial Intelligence Promoting the Development of New Quality Productivity: An Analysis Based on Dynamic QCA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    以中国30个(因数据缺失,未包含西藏和港澳台地区)省份为样本,运用TOE框架与动态QCA方法,研究人工智能要素对新质生产力提升的协同效应。结果发现,六个前因条件均为非必要条件,智能组织能力的缺失为高新质生产力的核心障碍;识别出形成高新质生产力的能力驱动-金融协同型、技术驱动-能力协同型、能力驱动型、能力驱动-政府协同型和组织主导型五种组态路径;根据组间和组内一致性分析结果,部分年份一致性存在波动,不存在明显的时间效应和案例效应,结果的解释力度较强。据此,提出多维度综合施策、针对不同组态类型定制具体策略、保持政策连续性和稳定性以及聚焦组织能力核心,旨在提升我国新质生产力的发展。

    Abstract:

    Taking 30 provinces(due to the lack of data, the statistical data mentioned here do not include the Tibet Autonomous Region, the Hong Kong Special Administrative Region, the Macao Special Administrative Region and Taiwan Province) in China as samples, the TOE framework and dynamic QCA method was used to study the synergetic effect of artificial intelligence elements on the improvement of new quality productivity. The results show that all six antecedent conditions are non-essential conditions, and the lack of intelligent organizational capabilities is the core obstacle to high new quality productivity. Five configuration paths are identified including ability-driven-financial synergy type, technology-driven-ability synergy type, ability-driven type, ability-driven-government synergy type and organization-led type. According to the consistency analysis results within and between groups, the consistency in some years fluctuates, and there is no obvious time effect or case effect. The explanatory power of the results is relatively strong. Based on this, it is proposed to adopt multi-dimensional comprehensive measures, customize specific strategies for different configuration types, maintain policy continuity and stability, and focus on the core of organizational capabilities, aiming to enhance the development of new quality productivity in China.

    参考文献
    相似文献
    引证文献
引用本文

吴建龙,巩振兴.人工智能促进新质生产力发展的路径——基于动态QCA的分析[J].科技与产业,2025,25(12):376-385

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-30
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊