基于Expectile回归森林模型的中国商业银行收益率风险测度研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Measuring Yield Risk in China's Commercial Banks Based on Expectile Regression Forest Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    有效防范和化解风险是金融业的永恒主题。在当前全球化且复杂严峻的经济金融环境下,提高对商业银行收益率风险的预测能力,并及时采取措施防范化解风险具有重要的现实意义。选取2013年1月至2022年12月A股上市商业银行的月度数据,构建非参数Expectile回归森林(ERF)风险预测模型对中国商业银行尾部风险进行测度,并将测度结果与传统的期望分位数回归(ER)模型和Expectile回归树(ERT)模型测度结果进行比较各自的预测性能。结果表明,ERF模型在对商业银行收益率风险测度性能表现出众,在不同风险水平下ERF模型的估计和预测能力显著优于ERT和ER模型;进一步分析发现,四大类商业银行尾部风险预测中误差最小和最大者分别是全国性大型商业银行和地方性农村商业银行,而股份制商业银行和地方性城市商业银行的误差值相当。运用ERF测度商业银行收益率风险为商业银行防范风险提供了重要决策依据,并有助于商业银行风险管理,为金融监管部门提供分类分层监管商业银行收益率风险的重要政策支撑。

    Abstract:

    In the financial business, effective risk avoidance and mitigation are perennial themes. In the face of the international economic and financial environment has become more complex and severe, extreme events caused by the tail risk brought about by the harm is very strong, China's banking industry risk prevention and control work will face new challenges. Therefore, under the current globalization and complex and severe economic and financial environment, it is of great practical significance to improve the prediction ability of yield risks of commercial banks and take timely measures to prevent and resolve the risks. Selecting the monthly data of China's A-share listed commercial banks from January 2013 to December 2022, a nonparametric Expectile Regression Forest (ERF) risk prediction model based on the Bagging algorithm to measure the tail risk of China's commercial banks, and simultaneously incorporates the bank leverage ratio, asset size, economic policy uncertainty, financial market volatility and liquidity into the model at the same time were constructed, and then the mean absolute error and root mean square error of the training set and test set data under different models and risk levels respectively was calculateed. Finally, the results were compared with the traditional expected quantile regression (ER) model and Expectile Regression Tree (ERT) model to determine the respective predictive performance. The results show that the ERF model has outstanding performance in measuring the tail risk of commercial banks, and the estimation and prediction ability of the ERF model is significantly better than that of the ERT and ER models under different levels of risk. Further analysis reveals that the smallest and the largest errors in the prediction of tail risk of the four major types of commercial banks are those of the national large-scale commercial banks and the local rural commercial banks, respectively, and the error values of the joint-stock commercial banks and the local urban commercial banks are comparable. The error values of joint-stock commercial banks and local urban commercial banks are comparable.

    参考文献
    相似文献
    引证文献
引用本文

严复雷,余晨曦,张高勋.基于Expectile回归森林模型的中国商业银行收益率风险测度研究[J].科技与产业,2025,25(12):141-151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-30
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊