基于FCM深度学习模型的证券股价研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Stock Prices Based on FCM-Deep Learning Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    股票市场预测是一个复杂且充满挑战的领域,序列常表现出高噪声、非线性和非平稳性等特性。为了提高预测的准确性,提出一种新的方法,即结合模糊C-均值(FCM)聚类算法来识别和利用股价预测序列中的局部趋势特征,分析中综合考虑股票的关键市场数据,包括开盘价、最高价、最低价、收盘价、成交量和成交额,作为预测模型的输入特征。通过实验,比较不同滑动窗口数对模型预测能力的影响的实证分析,可以发现:融合了FCM聚类和LSTM-Transformer组合模型的FCM-LSTM-Transformer方法的预测精度比单一深度学习模型和LSTM-Transformer组合模型均要高,评价指标达到最优,决定系数R2分别提升了2.75%、2.4%、2.19%。结果表明,该模型处理股票市场数据的复杂性方面更具明显优势。

    Abstract:

    Forecasting the stock market is a difficult and intricate task, as price series often display traits like significant noise, nonlinearity and non-stationarity. In order to improve the accuracy of predictions, a new method that combined the Fuzzy C-Means (FCM) clustering algorithm to identify and utilize local trend features in stock price prediction sequences was proposed. In the analysis, key market data of stocks, including opening price, highest price, lowest price, closing price, trading volume, and trading amount, was comprehensively considered as input features for the prediction model. Through experiments, an empirical analysis was conducted to compare the impact of different sliding window sizes (16, 32, 64) on the model’s predictive capability. It is found that the FCM-LSTM-Transformer method, which integrates FCM clustering with the LSTM-Transformer combination model, achieves higher prediction accuracy than both the standalone deep learning models and the LSTM-Transformer combination model. The evaluation metrics MAE, MAPE, MSE and RMSE reach their minimum errors, and the coefficient of determination R2 improved by 2.75%, 2.4% and 2.19%, respectively. These results indicate that this model has a significant advantage in handling the complexity of stock market data.

    参考文献
    相似文献
    引证文献
引用本文

郭泉吕,孙荣.基于FCM深度学习模型的证券股价研究[J].科技与产业,2025,25(12):44-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-30
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊