基于SMoE模型和电池融合数据的SOH和RUL联合预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Joint Prediction of SOH and RUL Based on SMoE Model and Battery Integration Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    电池的健康状况(SOH)和电池的剩余使用寿命(RUL)是衡量电池性能衰减和剩余使用时间的关键指标。预测电池SOH和RUL在实际应用中具有重要意义。通常会借助电池运行数据来训练机器学习算法,如神经网络或深度学习,以此来捕捉电池SOH和RUL的变化规律并进行预测。传统的机器学习模型往往采用单个模型来适配整个数据集,这在面对复杂且具有高度异质性的数据时显得力不从心,每一个预测目标构建一个模型,模型训练和维护成本较高。使用稀疏混合专家模型(SMoE),构建电池SOH和RUL的联合预测模型,使用电池融合数据,同时预测电池SOH和RUL。在NASA(美国国家航空和宇宙航行局)公开数据集合上测试效果。结果表明,提出的联合预测模型能够很好地预测电池SOH和RUL,SOH预测值的均方误差为0.069,RUL预测值的均方误差为2.042。在电化学阻抗谱(EIS)公开数据集合上测试效果,联合预测模型的SOH预测值的均方误差为0.118,RUL预测值的均方误差为3.072,准确性均有大幅度提升。

    Abstract:

    The state of health (SOH) and remaining useful life (RUL) of a battery are key indicators for measuring battery performance degradation and remaining useful time. Predicting battery SOH and RUL is of great importance in practical applications. Usually, battery operation data is used to train machine learning algorithms, such as neural networks or deep learning, to capture the changing patterns of battery SOH and RUL and make predictions. Traditional machine learning models often use a single model to adapt to the entire dataset, which is inadequate when dealing with complex and highly heterogeneous data. Building a model for each prediction target incurs high training and maintenance costs. Sparse mixture of experts (SMoE) was used to construct a joint prediction model for battery SOH and RUL, and battery fusion data was used to simultaneously predict battery SOH and RUL. The results of testing on NASA's public dataset show that the proposed joint prediction model can effectively predict battery SOH and RUL, with a mean square error of 0.069 for SOH prediction and 2.042 for RUL prediction. Tested on the EIS public dataset, the mean square error of the SOH prediction value of the joint prediction model was 0.118, and the mean square error of the RUL prediction value was 3.072, indicating a significant improvement in accuracy. The models and methods proposed in the text have certain reference and application value.

    参考文献
    相似文献
    引证文献
引用本文

常伟,胡志超,潘多昭,师继文.基于SMoE模型和电池融合数据的SOH和RUL联合预测[J].科技与产业,2025,25(11):91-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-18
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊