基于卷积神经网络的手写数字识别研究与设计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research and Design of Handwritten Digit Recognition Based on Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在信息化时代,手写数字识别在计算机视觉和模式识别中具有广泛应用。为了提升手写数字识别的精度和效率,设计并测试了四种基于卷积神经网络(CNN)的算法模型。通过对MNIST数据集的实证研究,比较了不同模型的训练效果。实验结果表明,多层卷积神经网络模型表现最优,准确率达到98.9%,且每轮训练时间仅需约20秒。研究表明,增加卷积层数和选择高阶API有助于提升识别精度,进一步推动了CNN在手写数字识别中的应用性能。这一结果为高效、准确的手写数字识别模型设计提供了新的思路和方法。

    Abstract:

    In the era of informatization, handwritten digit recognition has wide applications in computer vision and pattern recognition. In order to improve the accuracy and efficiency of handwritten digit recognition, four convolutional neural network (CNN)-based algorithm models were designed and tested. An empirical study was conducted on the MNIST dataset to compare the training performance of different models. The experimental results show that the multilayer CNN model performs best, with an accuracy rate of 98.9%, and each training cycle takes about 20 seconds. This indicates that increasing the number of convolutional layers and using high-level APIs help improve recognition accuracy, further enhancing the application performance of CNN in handwritten digit recognition. New insights and methods are provided for designing efficient and accurate handwritten digit recognition models.

    参考文献
    相似文献
    引证文献
引用本文

朱姣蓉.基于卷积神经网络的手写数字识别研究与设计[J].科技与产业,2025,25(10):69-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-06
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊