基于LDA模型的旅游住宿接待能力评价——以济南市为例
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Evaluation of Tourism Accommodation Reception Capacity Based on the LDA Model: A Case Study of Jinan City
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    对济南市旅游住宿设施进行了评价与需求预测研究,利用Python爬虫技术,从携程、去哪儿网和美团等平台抓取数据。应用LDA主题模型揭示文本数据中的潜在主题结构,从而有效分类住宿地标签。包括XGBoost、CatBoost、LightGBM和RandomForest在内的机器学习方法被用来筛选影响住宿地评分的核心指标。通过结合层次分析法(AHP)和熵权法来构建评估体系,以确定权重。通过可视化分析,揭示了不同主题类别、住宿地类型、区域类型以及与交通、商业区、学校和景点的接近程度在接待能力上的差异。基于酒店主题、评分分布、地理位置、评论数量和价格提出了优化建议,旨在提高服务质量和监管,从而增加接待能力和用户满意度。

    Abstract:

    A study on evaluating and forecasting the demand for tourism accommodation facilities in Jinan City was conducted. Data was crawled from platforms such as Ctrip, GoWhere.com, and Meituan using Python crawler technology. The LDA topic model was applied to uncover the latent thematic structure within the text data, enabling effective classification of accommodation place labels. Machine learning methods, including XGBoost, CatBoost, LightGBM, and RandomForest, were used to screen the core indicators that affect the ratings of lodging places. An evaluation system was constructed by combining the hierarchical analysis method (AHP) and the entropy weighting method to determine weights. Visual analysis was performed to reveal differences in reception capacity across various themes, accommodation types and areas, as well as proximity to transportation, business districts, schools and scenic spots. Suggestions for optimization are proposed based on the hotel’s theme, rating distribution, geographic location, review count and price, aiming to enhance service quality and supervision, thereby increasing reception capacity and user satisfaction.

    参考文献
    相似文献
    引证文献
引用本文

张莹莹,陈恒宇,张梦迪.基于LDA模型的旅游住宿接待能力评价——以济南市为例[J].科技与产业,2025,25(06):204-214

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-07
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊