基于知识图谱的稀疏数据协同过滤推荐算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Collaborative Filtering Recommendation Algorithm Based on Knowledge Graph for Sparse Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    因缺乏足够的交互关系支撑导致推荐精度不佳,对此,提出基于知识图谱的稀疏数据协同过滤推荐算法。抽取用户与物品的交互关系,构建知识图谱,利用知识图谱中的实体关系对用户和物品进行扩展表示。结合CNN网络将交互关系扩为复杂结构,捕获上下文信息,以欧氏距离算相似度。找到目标用户相似邻居集,用用户协同过滤预测评分,融合时间加权策略动态调整,生成推荐列表。测试表明,该算法NDCG值高,MAE和RMSE值低,推荐效果较理想。

    Abstract:

    Due to the lack of sufficient interaction support, the recommendation accuracy is poor. To address this, a sparse data collaborative filtering recommendation algorithm based on knowledge graph was proposed. Extract the interaction relationship between users and items, a knowledge graph was constructed, and the entity relationships in the knowledge graph was used to extend the representation of users and items. Combining CNN networks, interactive relationships was expanded into complex structures, contextual information was captured, and similarity using Euclidean distance was calculate. A set of similar neighbors was found for the target user, user collaboration filtering was used to predict ratings, the fusion time weighting strategy was dynamically adjusted, and a recommendation list was generated. Tests have shown that the algorithm has high NDCG values, low MAE and RMSE values, and ideal recommendation performance.

    参考文献
    相似文献
    引证文献
引用本文

许雪晶,林辰玮.基于知识图谱的稀疏数据协同过滤推荐算法[J].科技与产业,2025,25(06):30-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-07
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊