基于CNN和SEIR模型的航班延误扩散预测优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Optimization of Flight Delay Diffusion Prediction Based on CNN and SEIR Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    大面积航班延误引起的延误扩散现象对空中交通网络有显著影响。为更好地预测和控制延误扩散,针对航班延误扩散的非线性复杂特性以及实时性、准确性难以兼顾的特点,提出结合卷积神经网络(CNN)和传统流行病SEIR(易感-潜伏-感染-恢复)模型的延误扩散预测模型。基于航班延误扩散传播机理和SEIR模型建立航班延误扩散动力学模型,通过卷积神经网络对模型中的关键参数进行优化。利用MATLAB对优化后模型进行仿真。研究发现结合卷积神经网络模型后相比传统SEIR模型准确率提升了17.95%。

    Abstract:

    The delay diffusion phenomenon caused by large-scale flight delays has a significant impact on air traffic networks. In order to better predict and control delay diffusion, a delay diffusion prediction model combining convolutional neural network (CNN) and traditional epidemiological SEIR(susceptible-exposed-infectious-recovered) model is proposed for the nonlinear and complex characteristics of flight delay diffusion, as well as for the difficulty of combining real-time and accuracy. Based on the flight delay diffusion propagation mechanism and SEIR model, a flight delay diffusion dynamics model was established, and the key parameters in the model are optimized by convolutional neural network. The optimized model was simulated using MATLAB, and the accuracy was improved by 17.95% compared with the traditional SEIR model after combining the CNN model.

    参考文献
    相似文献
    引证文献
引用本文

朱代武,蔡林均,张瀚文.基于CNN和SEIR模型的航班延误扩散预测优化[J].科技与产业,2025,25(03):65-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-25
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊