基于自编码器的域适应时空测井曲线预测模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Self-encoder-based Domain-adaptive Spatio-temporal Logging Curve Prediction Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    以往研究中,测井曲线特征提取的不完整和模型构建较为简单,导致孔隙度预测精度受限。为提升预测精度,结合自编码器、长短期记忆网络和注意力机制,构建AE-LSTM-AT(自编码器-长短期记忆网络-注意力机制)模型。AE(自编码器)将源域数据和目标域数据的特征分布统一到同一空间,以降低因数据分布差异而引起的量纲变化对模型的干扰;改良后的LSTM(长短期记忆网络)在降低了参数量的同时,也增强了远距离时间步的特征影响,减少信息污染;而 Attention (注意力)机制的引入动态计算每个时间步的注意力权重,从而更精准地聚焦关键特征,提高模型在处理序列数据时的性能和表现。设立对照组MLP(多层感知器)和LSTM,进行4组对比实验,实验证明本文的模型结构在长期预测及跨域预测问题上具有较优效果。

    Abstract:

    In previous studies, incomplete extraction of logging curve features and simpler model construction resulted in limited porosity prediction accuracy. In order to improve the prediction accuracy,the self-encoder, long and short-term memory network and the Attention mechanism were combined to construct the AE-LSTM-AT (auto-encoder-long short-term memory network-attention mechanism)model. the AE (self-encoder) unifies the feature distributions of the source domain data and the target domain data into the same space, in order to reduce the interference of the magnitude changes on the model due to the differences in data distribution,the modified LSTM(long short-term memory network) reduces the number of parameters while enhances the feature impact of distant time steps and reduces information pollution,and the introduction of the Attention mechanism dynamically calculates the attention weight of each time step, thus focusing on the key features more accurately and improving the performance and performance of the model in processing sequence data. a control group including MLP(multilayer perceptron machine) and LSTM was set up, and four sets of comparison experiments were conducted. It is proved that the model structure of has superior results in the problems of long-term prediction and cross-domain prediction.

    参考文献
    相似文献
    引证文献
引用本文

刘成丽,朱晨光.基于自编码器的域适应时空测井曲线预测模型[J].科技与产业,2025,25(03):13-19

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-25
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊