基于时序分解特征的水质溶解氧预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Prediction of Dissolved Oxygen in Water Quality Based on Time Series De-composition Characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提高水体生态系统的稳定性,提出一种基于变分模态分解(VMD)的水质溶解氧混合预测模型,利用VMD将溶解氧进行分解得到多个IMFs,根据不同IMFs的特点,分别建立不同的模型。非线性序列部分使用主成分(PCA)和粒子群(PSO)优化最小二乘向量机(LSSVM)模型;线性序列部分使用差分整合移动平均自回归模型(ARIMA)。将各部分预测结果结合起来,得到溶解氧的预测值。将本文模型运用于京杭大运河常州段某监测点进行验证,结果显示平均绝对误差为0.168、均方根误差为0.211、平均绝对百分率误差为4.576,混合预测模型具有较高的预测精度,能够满足现代化水质管理的高要求。

    Abstract:

    In order to improve the stability of the water ecosystem, a mixed prediction model of dissolved oxygen based on variational mode decomposition (VMD) was proposed. Dissolved oxygen was decomposed by VMD to obtain multiple IMFs, and different models were established according to the characteristics of different IMFs. Principal component analysis (PCA) and particle swarm optimization (PSO) to optimize the least squares vector machine model (LSSVM) was uesed in the nonlinear sequence part autoregressive integrated moving average model (ARIMA) was used in the linear sequence part. The prediction results of dissolved oxygen were obtained by combining the prediction results of each part. The model in this paper was applied to a monitoring point in the Changzhou section of the Bei-jing-Hangzhou Grand Canal. The results show that the average absolute error is 0.168, the root mean square error is 0.211, and the average absolute percentage error is 4.576. The mixed model can predict dissolved oxygen well and has certain practical significance for the management of water quality environment.

    参考文献
    相似文献
    引证文献
引用本文

李慧.基于时序分解特征的水质溶解氧预测[J].科技与产业,2024,24(24):273-279

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-13
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊