基于改进DBO优化的CNN-KELM柔性直流换流阀故障辅助决策方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Fault-assisted Decision-making Method for Flexible DC Converter Valve Based on CNN-KELM with Improved DBO Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提高柔性直流换流阀故障分类正确率,提出基于改进蜣螂优化算法(IDBO)的卷积神经网络融合-核极限学习机(CNN-KELM)柔性直流换流阀故障分类方法。对柔性直流换流阀故障特征库归一化处理,利用CNN进行故障特征提取,采用IDBO优化KELM的核参数和惩罚因子。将IDBO-CNN-KELM作为分类器对提取到的柔性直流换流阀故障库进行分类。通过实验证明,IDBO-CNN-KELM模型在故障测试集中的分类正确率达到97.727%,相较传统KELM、PSO(粒子群算法) -CNN-KELM提升了1.136%、0.577%,证明了IDBO-CNN-KELM模型的精确性。该方法有效提高了柔性直流换流阀故障分类的准确性和效率,增强了电网直流输电可靠性。

    Abstract:

    In order to improve the correct rate of flexible DC converter valve fault classification, a flexible DC converter valve fault classification method based on the convolutional neural network fused kernel-extreme learning machine (CNN-KELM) optimized by the Improved dung beetle optimization algorithm (IDBO) is proposed. The flexible DC converter valve fault feature library is normalized, the CNN network is used for fault feature extraction, and IDBO is used to optimize the kernel parameters and penalty factors of KELM. IDBO-CNN-KELM is used as a classifier to classify the extracted flexible DC converter valve fault library. Through experiments, the IDBO-CNN-KELM model achieves a classification correctness of 97.727% in the fault test set, which improves 1.136% and 0.577% compared with the traditional KELM and PSO-CNN-KELM, proving the accuracy of the IDBO-CNN-KELM model. The method effectively improves the accuracy and efficiency of fault classification of flexible DC converter valves, and enhances the reliability of DC transmission in power grids.

    参考文献
    相似文献
    引证文献
引用本文

马群,戈一航,刘黎,田蘅.基于改进DBO优化的CNN-KELM柔性直流换流阀故障辅助决策方法[J].科技与产业,2024,24(21):311-318

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-19
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊