低幅构造识别技术研究与应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research and Application of Low Amplitude Structure Identification Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对滨里海盆地东缘阿克若尔构造带低幅度构造识别的问题,开发基于反演层速度法和构造趋势面拟合法的低幅构造识别方法。该方法适用于局部发育速度异常体、速度变化快、斜坡区目的层埋藏深度大且圈闭幅度小的情况;优选构造解释层位趋势和单井速度约束下的层速度反演的方法建立研究区速度模型,对地震层位进行标定,该方法克服了常规层速度反演方法横向连续性的限制,对复杂地层具有更好的适应性;构造趋势面拟合法对研究区低幅构造进行了有效识别,克服了因构造幅度低、同相轴平直并且变化幅度小而难以识别的问题,对滨里海东缘深度域构造图进行了构造趋势面拟合,取得了较好的效果。

    Abstract:

    In response to the problem of identifying low amplitude structures in the Akzor structural belt on the eastern edge of the Caspian Sea basin, a low amplitude structural identification method based on inversion layer velocity method and structural trend surface fitting method was developed. This method is suitable for situations where velocity anomalies are locally developed, velocity changes are rapid, layer burial depth in slope areas is large, and trap amplitude is small. The method of optimizing structural interpretation horizon trends and interval velocity inversion under single well velocity constraints is used to establish a velocity model for the study area and calibrate seismic horizons. This method overcomes the limitations of lateral continuity of conventional interval velocity inversion methods and has better adaptability to complex formations. The structural trend surface fitting method has effectively identified the low amplitude structures in the study area, overcoming the problems that are difficult to identify due to low structural amplitude, flat event axes, and small variation amplitude. The structural trend surface fitting method has been applied to the depth domain structural map of the eastern edge of the Caspian Sea, and good results have been achieved.

    参考文献
    相似文献
    引证文献
引用本文

王震,计智锋,张艺琼,王雪柯,林雅平,孔令洪,蒋黎,张孝珍.低幅构造识别技术研究与应用[J].科技与产业,2024,24(14):210-219

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-02
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊