基于SOM-K-means的新能源车能效评估
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Energy Efficiency Assessment of New Energy Vehicles Based on Self-Organized Mapping Neural Network Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    对新能源汽车进行能效评估是监控车辆性能和及时做出预警的前提。利用取自大数据实时监测平台的新能源车运行数据,总结新能源车性能特征,构建能效等级评价算法。基于自组织映射神经网络修正k-means聚类受初始点影响较大的不足,结合主成分分析给出新能源汽车能效等级结果。通过实际案例验证了方法的有效性和实用性。

    Abstract:

    Energy efficiency evaluation of new energy vehicles is a prerequisite for monitoring vehicle performance and making timely warnings. Using the operational data of new energy vehicles taken from the real-time big data monitoring platform, the performance characteristics of new energy vehicles was summarized and an energy efficiency evaluation algorithm was constructed. Based on the self-organized mapping neural network, the shortcoming of K-means clustering which was affected by the initial point, was corrected and combined with the principal component analysis to give the results of energy efficiency rating of new energy vehicles. The effectiveness and practicability of the method are verified through practical cases.

    参考文献
    相似文献
    引证文献
引用本文

于洋,谷佳敏,侯坤琪,李彦锦,余云云,乔芙蓉.基于SOM-K-means的新能源车能效评估[J].科技与产业,2024,24(14):79-85

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-02
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊