海上大兆瓦风电机组故障预测与识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Fault Prediction and Identification of Wind Turbine Based on Offshore Megawatt Units
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着双碳战略的持续推进,可再生能源发电的重要性越来越被重视。海上风电机组位于偏僻地区,故障后维修难度较大,因此风电机组故障预测与识别技术研究至关重要。基于Python sklearn的机器学习框架和基于TensorFlow的故障预警方法,采用多种特征提取方式,并使用卷积神经网络进行特征融合和分类,可实现对海上风电系统的故障诊断和预警。详细介绍该方法的设计思路、实验步骤和实验结果,并对该方法进行评估和分析。

    Abstract:

    With the continuous promotion of the dual-carbon strategy, the importance of renewable energy generation is becoming more and more important. Offshore wind turbines are located in remote areas, and maintenance after failure is more difficult. Therefore, the research on wind turbine fault prediction and identification technology is crucial. A machine learning framework based on Python sklearn and a fault warning method based on TensorFlow ,multiple feature extraction methods is adopted and convolutional neural networks is used for feature fusion and classification, which can achieve fault diagnosis and warning for offshore wind power systems. The design ideas, experimental steps, and experimental results of the method was introduced in detail, and this method was evaluated and analyzed.

    参考文献
    相似文献
    引证文献
引用本文

张智伟,王靖,黄煜明,郑俊杰.海上大兆瓦风电机组故障预测与识别[J].科技与产业,2023,23(17):273-278

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-02
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊