基于SegNet网络和概率图模型的工区障碍物提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Obstacle Extraction for Exploration Areas Based on SegNet and Probabilistic Graphical Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为适应5G(第5代移动通信技术)智能节点后续投入生产后的高效地震采集工作,利用少量自制训练数据创新性地将传统算法与深度学习相结合提出障碍物自动提取方法。搭建SegNet网络,得到粗糙的语义分割结果,利用条件随机场、特征与空间概率融合等概率图模型依次做了边界平滑和噪声消除的优化处理,最终的语义分割结果在各类障碍物上的准确率较高。与单一使用深度网络需要数万级数据来提升泛化能力相比,提出在少量训练集条件下具有较强泛化能力的语义分割方法,从而能够低成本、灵活高效地运用到各种特定的语义分割场景中。

    Abstract:

    In order to adapt to efficient seismic acquisition after 5G(fifth-generation mobile communication technology)intelligent node being put into production, the scheme of automatically extracting obstacles has been proposed by using a little self-made training data and innovatively combining traditional algorithms with deep learning. A SegNet networkhas built, obtaining a rough segmentation result.Optimization processing including boundary smoothing and noise elimination, which achieved by utilizing probabilistic graphical model - conditional random fields and feature - space probability fusion respectively.Finally, the segmentation has attained higher accuracy rates on each class of obstacles.Compared with the deep network single using which needs tens of thousands of levels of data to improve the generalization ability,a semantic segmentation method has proposed with strong generalization ability under the condition of a little training data, which can below-costly, flexibly and efficiently used in various specific semantic segmentation scenarios.

    参考文献
    相似文献
    引证文献
引用本文

胡敏,陈楠,毕进娜.基于SegNet网络和概率图模型的工区障碍物提取[J].科技与产业,2023,23(17):266-272

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-02
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊