基于网格搜索和随机森林的汽车信贷违约预测研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Automobile Credit Default Prediction Based on Grid Search and Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于某金融机构的汽车信贷违约数据构建随机森林风险预测模型,用主成分分析法对数据进行降维,利用上采样的方法解决样本不平衡的问题,同时通过综合五折交叉验证法和网格搜索对随机森林模型调参。此外,还与其他机器学习算法的预测结果进行比较。研究表明,相对于其他两种预测模型,随机森林的性能都是最优的,性能较佳。同时,采用随机森林计算特征重要性时发现,个人抵押资产的价值对汽车信贷违约有显著的影响。

    Abstract:

    Based on the automobile credit default data of a financial institution, a random forest risk prediction model is constructed. The principal component analysis method is used to reduce the dimensions of the data, and the method of up sampling was used to solve the problem of sample imbalance. The random forest model parameters were adjusted by integrating the 50 fold cross validation method and grid search. In addition, the prediction results are compared with those of other machine learning algorithms. The research shows that, compared with the other two prediction models, the performance of random forest is optimal and better. At the same time, when using stochastic forests to calculate the importance of characteristics, the value of personal mortgage assets has a significant impact on automobile credit default.

    参考文献
    相似文献
    引证文献
引用本文

陈滢.基于网格搜索和随机森林的汽车信贷违约预测研究[J].科技与产业,2023,23(09):116-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-29
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊