矿区地表形变监测及预测方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Monitoring and Forecasting Methods of Surface Deformation in Mining Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    利用2018年1月至2021年12月的47景Sentinel-1A影像,基于SBAS-InSAR技术,对窑街矿区进行沉降监测。根据矿区沉降特征,构建GM(2,1)、BP神经网络、PSO-SVR和LSTM4种预测模型,对3个矿区2020—2021年形变中心沉降值进行预测分析。结果显示:窑街矿区大部分区域处于稳定状态,矿区中心形成明显的沉降漏斗,最大平均沉降速率为157.01 mm/a,2018—2021年最大累积沉降量达到681.82 mm,存在发生采空区大面积塌陷和次生地质灾害的危险。预测结果显示,4种模型表现出不同的预测精度, LSTM模型预测精度最高,可作为矿区地表沉降相对可靠的预测模型。

    Abstract:

    Based on SBAS-InSAR technology, 47 sentinel-1A images from January 2018 to December 2021 were used to monitor the subsidence of Yaojie mining area. According to the subsidence characteristics of mining areas, 4 prediction models, GM(2,1), BP neural network, PSO-SVR and LSTM, are constructed to predict and analyze the subsidence values of deformation centers in three mining areas from 2018 to 2021. The results show that most areas of Yaojie Mining Area are in a stable state, and the obvious subsidence funnel is formed in the center of the mining area. The maximum annual average subsidence rate is 157.01 mm/a, and the maximum accumulated subsidence from 2020 to 2021 is 681.82 mm, so there is a danger of large-scale subsidence and secondary geological disasters in mined-out areas. The prediction results show that the four models show different prediction accuracy, and the LSTM model has the highest prediction accuracy, which can be used as a relatively reliable prediction model of land subsidence in mining areas.

    参考文献
    相似文献
    引证文献
引用本文

张兰军,王世杰,金鑫田,姜鑫.矿区地表形变监测及预测方法研究[J].科技与产业,2023,23(07):248-253

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-11
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊