基于深度学习对茅台机场降水量预测的研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Precipitation Prediction of Maotai Airport Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    强降水等恶劣天气对于民航的正常运行有着极大的危害,降水量的准确预测有助于民航等企业安全稳定运行。通过对机场跑道自动气象观测系统(AWOS)收集的降水时序数据进行预处理,为深度学习提供训练和测试的样本集,然后分别构建长短期记忆模型(LSTM)和时序卷积网络(TCN)模型,实现对未来1~3 h降水量的预测,并对两个模型的预测精度进行比较分析。结果表明,TCN模型的预测效果优于LSTM模型。其中,对未来1~3 h降水量的预测中,TCN模型的R2分别为0.96、0.91和0.86。

    Abstract:

    Severe weather such as heavy precipitation is of great harm to the normal operation of civil aviation. The accurate prediction of precipitation is helpful to the safe and stable operation of civil aviation and other enterprises. By preprocessing the precipitation time series data collected by automatic meteorological observation of airport runway system(AWOS), training and testing sample sets are provided for deep learning. Then, long short-term memory model (LSTM) and time series convolution network (TCN) models are constructed respectively to realize the prediction of precipitation in the next 1 to3 hours. Then, the prediction accuracy of the two models is compared and analyzed. The results show that the prediction performance of TCN model is better than that of LSTM model. The R2 of TCN model is 0.96, 0.91 and 0.86 for the forecast of precipitation in the next 1 to 3 hours, respectively.

    参考文献
    相似文献
    引证文献
引用本文

余涛涛,江柯,高鹏.基于深度学习对茅台机场降水量预测的研究[J].科技与产业,2023,23(07):235-240

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-11
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊