基于高光谱卫星影像的清镇市红枫湖水体总磷浓度反演研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Inversion of Total Phosphorus Concentration in Hongfeng Lake of Qingzhen City Based on Hyperspectral Satellite Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    清镇市红枫湖位于贵阳市清镇辖区,东西宽约8 km,南北长约13 km,属于保护级饮用水源地,其中保护区湖域面积约291 km2。为了对宽阔的湖域及流域区域水质进行快速监测分析,利用高光谱卫星影像建立清镇红枫湖水质总磷浓度的反演模型。通过对红波段(670 nm)处的反射率修正和相关系数校正,利用浮点计算过滤主成分冗余数据,在2020年3、4、5月份分别对6个目标区域进行总磷浓度反演并实地采集水体生化参数验证,该水质总磷浓度反演模型精度平均值为84%。基于模型的反演数据基本可用于红枫湖水体总磷浓度时序性变化分析,为水生态环境监测提供有效数据。

    Abstract:

    Qingzhen Hongfeng Lake is located in Qingzhen District, Guiyang City, with a width of about 8 kilometers from east to west and a length of about 13 kilometers from north to south. It is a protected drinking water source, of which the lake area of the reserve is about 291 square kilometers. In order to monitor and analyze the water quality of the wide lake area and the basin area, an inversion model for the total phosphorus concentration of Qingzhen Hongfeng Lake Using Hyperspectral satellite images is introduced.Through the correction of reflectance and correlation coefficient at the red band (670 nm), the principal component redundancy data are filtered by floating-point calculation. After the inversion of total phosphorus concentration in six target areas in March, April and May 2020 and the verification of water biochemical parameters collected on the spot, the average precision of the inversion model of total phosphorus concentration in this water quality is 87%, The inversion data based on the model can basically be used to analyze the temporal change of total phosphorus concentration in Hongfeng Lake, and provide effective data for water ecological environment monitoring.

    参考文献
    相似文献
    引证文献
引用本文

陈章林,杨刚,曾骏,曾静,赵宗鸿.基于高光谱卫星影像的清镇市红枫湖水体总磷浓度反演研究[J].科技与产业,2023,23(05):240-244

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-20
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊