基于双向长短时循环神经网络的沉积微相自动识别方法——以莺歌海盆地东方B气田为例
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Automatic Identification Method of Sedimentary Microfacies Based on Bi-directional Long Short-term Recurrent Neural Network:Taking Dongfang B Gas Field in Yinggehai Basin as an example
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    莺歌海盆地东方B气田发育浅海重力流海底扇沉积,其砂体分布及叠置关系复杂,使用人工识别的方式进行沉积微相解释工作繁琐且易受主观因素影响。针对该问题,基于双向长短时循环神经网络设计串行网络架构沉积微相识别模型,该模型以测井资料、岩性录井资料为输入,可有效提取不同沉积微相的测井曲线形态特征,并充分考虑相邻沉积微相之间的关联性。将模型应用于该区沉积微相识别工作中,降低了储层非均质性及人工经验带来的影响,提高了识别精度,取得了良好的应用效果。

    Abstract:

    Dongfang B Gas Field in Yinggehai Basin is a shallow sea gravity flow submarine fan deposit, which sand body distribution and superposition relationship are complex. The interpretation of sedimentary microfacies by manual identification is cumbersome and easy to be affected by subjective factors. A sedimentary microfacies recognition model with serial network architecture is designed based on bi-directional long short-term recurrent neural network. Taking logging data and lithology logging data as input, this model can effectively extract the morphological characteristics of logging curves of different sedimentary microfacies, and fully consider the correlation between adjacent sedimentary microfacies. The model is applied to the sedimentary microfacies identification in this area, which effectively reduces the influence of reservoir heterogeneity and artificial experienc,and improve the identification accuracy and achieves good application results.

    参考文献
    相似文献
    引证文献
引用本文

齐春生,丁磊,焦祥燕,郑志锋,吴妍.基于双向长短时循环神经网络的沉积微相自动识别方法——以莺歌海盆地东方B气田为例[J].科技与产业,2023,23(05):217-221

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-20
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊