基于机器学习的岩性识别研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Device Research on Lithology Recognition Based on Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    钻井过程中的岩性识别是一个复杂且不断变化的非线性过程,很难建立准确的数学模型。由于传统识别方法存在解释精度低以及难以获得或丢失测井曲线的问题,因此直接通过传感器获取的钻速、钻压等每个与岩性有直接或间接关系的钻井参数,利用钻井参数进行岩石预测。基于机器学习技术,采用BP神经网络学习算法,根据地层岩性的特点,建立神经网络识别岩性模型,构造钻进参数样本并在MATLAB软件中利用神经网络工具箱进行岩性识别,分析训练集样本数量对模型识别准确率的影响。研究结果表明:BP神经网络输出非常准确,描述了采集到的钻井参数与岩性之间的关系,体现出神经网络的优越性;对钻井过程中岩性的识别具有积极的作用,有利于合理选择钻头类型、及时调整钻井参数和提高钻井效率。该岩性识别方法应用于仿生PDC钻头等方面,在试验和理论相互补充、支撑的同时便于利用该方法针对智能石油钻机开展更深层次的研究。

    Abstract:

    Lithology identification in the drilling process is a complex and constantly changing nonlinear process, and it is difficult to establish an accurate mathematical model. Due to the low interpretation accuracy of traditional identification methods and the difficulty of obtaining or missing logging curves, the ROP, weight on bit and other drilling parameters that are directly or indirectly related to lithology obtained through sensors are directly used for rock prediction. Based on machine learning technology, using BP neural network learning algorithm, according to the characteristics of stratum lithology, a neural network recognition lithology model was established, drilling parameter samples was constructed and the neural network toolbox in the software MATLAB was used to perform lithology recognition and analysis the effect of the number of samples in the training set on the accuracy of model recognition. The research results show that the output of the BP neural network is very accurate, describing the relationship between the collected drilling parameters and the lithology, and reflecting the superiority of the neural network. It has a positive effect on the identification of lithology in the drilling process, which is conducive to the reasonable selection of drill bit types, timely adjustment of drilling parameters and improvement of drilling efficiency. The lithology identification method is applied to bionic PDC drill bits, etc., while experiment and theory complement and support each other, it is convenient to use this method to carry out deeper research on intelligent oil drilling rigs.

    参考文献
    相似文献
    引证文献
引用本文

王杰,席凯凯,郭禹伦.基于机器学习的岩性识别研究[J].科技与产业,2022,22(01):311-315

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-27
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊