成对点云对应关系优化的点云配准算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Point Cloud Registration Algorithm on Optimization of Correspondence between Paired Point Clouds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对点云配准过程中存在的迭代次数多、易收敛到局部最优、配准时间长等问题,提出一种基于成对点云对应关系优化的点云配准方法。首先利用快速特征直方图(FPFH)与特征优化生成初始的对应关系;然后通过检查对应点之间是否满足最邻近原则得到初始的对应点集,再对初始的点集进行L2范数比值判别,基本选择出正确对应关系的对应点集,最后通过交替优化计算点云的变换矩阵,实现点云的精确配准。实验结果表明,与传统算法相比,该算法配准速度快,配准精度较高,并且对重叠度低、噪声大的点云具有很好的稳健性。

    Abstract:

    Aiming at the problem of taking a lot of time to iterate, easy to converge to the local optimal, and long time for the point cloud registration, proposes a point cloud registration method based on the optimization of the corresponding relationship of the paired point clouds. Firstly, using the fast feature histogram (FPFH) and feature optimization to generate the initial correspondence; then, by checking whether the corresponding points meet the nearest neighbor principle, the initial corresponding point set is obtained, and then the initial point set is judged by the L2 norm ratio, and the corresponding point set with the correct corresponding relationship is basically selected. Finally, the point cloud is calculated by alternating optimization Transformation matrix to achieve precise registration of point clouds. Experimental results show that compared with the traditional ICP algorithm,the proposed algorithm has fast registration speed, high registration accuracy, and it is robust to point clouds with low overlap and high noise.

    参考文献
    相似文献
    引证文献
引用本文

梁宏.成对点云对应关系优化的点云配准算法[J].科技与产业,2021,21(04):290-294

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-22
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊