基于百度指数的公路运价指数RO-ELM预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Rolling Extreme Learning Machine Forecast of Highway Freight Index Based on Baidu Index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    公路运价指数是公路运输市场波动的衡量指标,对中国的公路运输业有重要的预示功能。利用极限学习机(ELM)的神经网络模型快速、低成本预测公路运价指数。以各百度指数与公路运价指数的相关性确定各分量对公路运价指数的影响,进而利用ADF平稳性检验与Johansen协整检验构建输入序列,最后运用时域优化思想优化输入变量,在ELM神经网络模型内输出预测值。结果表明:基于滚动窗口的ELM模型的MAPE与RMSE分别为1.85%与25.17,比单一ELM模型在平均绝对百分比误差和均方根误差上都有提升,预测结果与指数波动相符,可以为公路运价指数的走向提供决策参考。

    Abstract:

    Highway transportation price index is a measure of the fluctuation of highway transportation market, which has an important predictive function for China's highway transportation industry. The extreme learning machine (ELM) neural network model is used to predict the highway freight index quickly and at low cost. Using the Person correlation coefficient of Baidu index and highway freight index to determine the impact of component on the highway freight index, and then the ADF stationarity test and Johansen cointegration test were used to construct the input sequence, and finally the window scroll was used to optimize the input variables. The predicted value was output in the ELM model. The results show that the ELM model based on the rolling window improved average absolute percentage error and root mean square error compared with the single ELM model. The prediction results are consistent with the index fluctuations, which can provide a decision reference for the direction of the highway freight index.

    参考文献
    相似文献
    引证文献
引用本文

朱曦,赖应良,段雨彤.基于百度指数的公路运价指数RO-ELM预测[J].科技与产业,2021,21(01):179-184

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-09
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊