基于粒子群优化极限学习机的中长期电力需求预测研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on the Medium and Long-term Power Demand Forecasting Based on Particle Swarm Optimization Extreme Learning Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    科学准确预测中长期电力需求有利于电力工业的科学规划与经济社会的协调发展。通过考虑宏观经济、产业结构等六大类共24个影响电力消费的因素,较为全面地体现经济特征,使用因子分析有效消除因素之间的多重共线性。基于参数设置相对简单的极限学习机,提出改进的粒子群算法优化的极限学习机模型。通过实证分析,利用该模型进行历史负荷序列预测,验证模型的有效性。

    Abstract:

    Scientific and accurate prediction of medium and long-term power demand is conducive to scientific planning of the power industry and coordinated development of the economy and society. By taking into account the 24 factors in six categories, such as macroeconomics and industrial structure, which affect the electricity consumption, the economic characteristics are fully reflected, and the multicollinearity among the factors is effectively eliminated by factor analysis. A relatively simple limit learning machine is set up based on parameters, and an improved particle swarm optimization model of limit learning machine is proposed. Through empirical analysis, the model is used to predict the historical load sequence to verify the effectiveness of the model.

    参考文献
    相似文献
    引证文献
引用本文

王婷,刘婷婷.基于粒子群优化极限学习机的中长期电力需求预测研究[J].科技与产业,2020,20(06):21-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-06-23
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊