基于遗传算法优化反向传播神经网络的中国二氧化碳排放量影响因素研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Using a Back Propagation Neural Network Based on Genetic Algorithm to Study Influence Factors of Carbon Dioxide Emissions in China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着经济的发展与社会的进步,温室效应问题的愈加严重已经威胁到人类的正常生存与社会经济的可持续发展。为了能够更加准确的预测我国未来几年二氧化碳排放量,从而采取相应的节能减排政策,采用遗传算法(GA)优化反向传播神经网络(BPNN)的初始连接权值和阈值,克服了反向传播神经网络极易收敛于局部极小的缺点。通过我国1985-2015年的碳排放量和影响因素进行实证分析,结果证明GA优化过的BPNN模型(GA-BPNN)对二氧化碳排放量的预测有着更高的精度,更适用于我国当前二氧化碳排放量预测的需要。

    Abstract:

    With the development of the economic, the problem of the global greenhouse effect has been attached more importance than before. In order to predict the emission of the carbon dioxide in the coming years more precisely and take corresponding energy conservation and emission reduction measures in time. In this paper, the genetic algorithm (GA) is used to optimize the initial connection weights and thresholds of the tradition Back Propagation Neural Network (BPNN) named GA-BPNN model, which can overcome BPNN’s shortcoming of converging to the local minimum obviously. The data of China during the period 1985-2015 including carbon emission and influence factors are selected to perform the carbon dioxide emission prediction with the established model. The results indicates that the GA-BPNN model established in this paper has a higher accuracy, which is more applicable to the current prediction of carbon emissions.

    参考文献
    相似文献
    引证文献
引用本文

田亚亚.基于遗传算法优化反向传播神经网络的中国二氧化碳排放量影响因素研究[J].科技与产业,2018,(01):68-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-02-26
×
《科技和产业》
喜报 | 学会期刊《科技和产业》成为国家哲学社会科学文献中心2024年度最受欢迎的经济学期刊