中国省际高技术产业创新效率评价研究

——基于超效率 DEA 模型和 Malmquist 指数法

张月明，蒋永涛

（上海海事大学 经济管理学院，上海 201306）

摘要：基于中国 29 个省市区 2014—2018 年高技术产业的面板数据，首先采用超效率 DEA 模型对各省市生产效率进行测算，进而构建 DEA-Malmquist 模型对各省市综合生产率指数进行计算和分解。结果表明，中国高技术产业创新效率的总体水平较高，但是超过一半的省市区要素投入结构不合理，而且主要分布在中部和西部地区，创新效率存在较大的区域差异；中国高技术产业的全要素生产率指数平均值大于 1，很多省份存在规模效率不高的问题，导致创新效率呈现 N 型的倒V形特征。技术进步和技术效率是全要素生产率提高的主要动力。因此，为了进一步提高我国高技术产业创新效率，需要保持高技术产业的技术水平和技术效率，尤其要重视高技术产业科技资源的优化配置，提升高技术产业创新资源的管理水平。

关键词：高技术产业；创新效率；超效率 DEA 模型；Malmquist 指数法

中国分类号：F429.9 文献标志码：A 文章编号：1671－1807[2021]01－0001－07

高技术产业的快速发展是推动国家创新驱动发展战略实施的重要一环，我国的高技术产业包括医药制造业、航空航天器及设备制造业、电子及通信设备制造业、计算机及办公设备制造业。技术进步和技术效率是全要素生产率提高的主要动力。因此，从区域经济的空间视角，分析高技术产业创新效率的发展变化和障碍因素，对提高我国高技术产业的创新能力，推动高技术产业的可持续发展具有重要的现实意义。

1 文献述评

近年来，随着对创新投入力度的不断加强，我
国的高技术产业得到快速发展，很多学者开始致力于
于我国高技术产业发展的研究，高技术产业发
展分析和高技术产业创新效率评价两方面。

高技术产业发展方面，汤学安[1]利用空间计量的
方法研究高技术产业发展水平对区域产业结构升级
的影响，计算了 2000—2015 年间中国产业结构水平
的全距 Moron’s I 指标，得出结论：高技术产业对产
业结构具有促进效应，并且这种效应可以外溢到其他
地区，但是辐射范围有限。赵立平、钟昌标、王作功[2]
提出了产业创新度的概念，采用面板回归回归模
型分析了高技术产业创新程度与产出的互动机制，研
究结果表明，高技术产业创新能力之间的关联性呈
U 型曲线。王玉林、胡燕[3]从创新过程视角将高技术产业创新过
程分为科技成果形成、商业价值形成与规模经济效益
形成三个阶段，测算从创新投入到创新产出的滞后期
2014 年统计数据分析了高技术产业在发展水平上
与影响因素，结果表明，高技术产业主要集中在东部地
区且呈快速发展趋势，内部差距最大的是西部地区。李
培哲[5]以产学研为视角，运用系统动力学方法，分
析了影响高技术产业成长的关键因素及其影响程度，研
究结果表示研发投资、科技人才投入是影响高技术产
业成长的主要因素。

高技术产业创新效率评价方面，陈燕儿、蒋伏
心和白俊红[6]基于全要素生产率视角实证考察了高
技术产业的高质量发展问题。通过 Hicks-Moorsten
TFP 指标分析了中国高技术产业全要素
生产力问题，分析了生产率及其动力的区域差异。李
志安、苏敬勤、刘小燕[7]采用权重和模型和乘
积模型研究了我国高技术产业创新效率，研究发
现，在提高生产系统整体效率方面，合理分配研发
投入资源比一味加大研发投入更有效。符文帮、杨
尼系数和区位径指数对高技术产业聚集度进行了
测算，研究结果发现我国高技术产业的整体空间分
布处于高水平状态。杨倩[9]基于反向推动作用的
SBM 模型评价了 2018 年中国高技术产业的创新效
率，研究发现东部地区一直处于领先水平，中部次
之，西部效率变化较大，东北最低。杨有才、李顺和
技术产业创新效率，采用了全局向量自回归模型研
究我国东中西部之间高技术产业创新效率的溢出
效应，研究结果发现，要充分发挥东部高技术产业
技术创新发展的带动作用，同时增强西部高技术产
预期产出纳入产出指标体系，应用 SGM 模型
和 EBM 模型测度高技术产业技术开发、技术转化
和市场化 3 个阶段创新效率。桂俊辉[12]运用改进的
CRITIC 客观赋值法对指标赋权，并通过整数秩
次和比值 WRSR 对我国 31 个省市区的高技术产
业发展水平进行分级评价，在进一步分析各地区差
异及制约因素基础上，提出应加快形成以高技术产
业为引领的地方经济发展。加强政策扶持，促进生
产要素的合理流动，实现区域间高技术产业协同
发展。

综上所述，对于高技术产业的研究文献相当丰
富，许多文献指出，影响高技术产业创新发展的主
要因素有研发投入、科技人才培养[13]；用以评价
高技术产业创新效率的指标有新产品的市场响应度、
海外市场响应度和自身的研发水平等，为本文
评价指标的建立提供了基础。同时考虑到我国不
同地区高技术产业的创新效率存在差异，因此本文
采用 DEA-Malmquist 模型对各省份地区进行创新
效率测度和动态分析，从而为全国范围内高技术产
业创新发展提供决策建议。

2 评价指标与模型构建

2.1 指标构建及数据说明

在指标的选取上，选择研发人员数、研发投入
和新产品开发投入作为创新过程中的劳动投入和
资本投入投入衡量。创新产出方面，选择专利申请
数量作为创新产出的第一个衡量指标，此外，新产
品销售额、出口贸易额反映了创新产出在市场上的
响应程度，分别作为创新产出的第二个、第三个衡量
指标。构造的中国省际高技术产业创新能力评价指标
体系如表 1 所示。

表 1 中国省际高技术产业创新生产效率评价指标体系

<table>
<thead>
<tr>
<th>一级指标</th>
<th>二级指标</th>
<th>三级指标</th>
</tr>
</thead>
<tbody>
<tr>
<td>创新投入</td>
<td></td>
<td></td>
</tr>
<tr>
<td>劳动投入</td>
<td>研发人员数量 X1</td>
<td></td>
</tr>
<tr>
<td>资本投入</td>
<td>研发投入(亿万元)X2</td>
<td>新产品开发投入(亿万元)X3</td>
</tr>
<tr>
<td>创新产出</td>
<td></td>
<td></td>
</tr>
<tr>
<td>新产品市场响应度</td>
<td>新产品销售额(亿万元)Y2</td>
<td></td>
</tr>
<tr>
<td>海外市场响应度</td>
<td>出口贸易额(亿万元)Y3</td>
<td></td>
</tr>
</tbody>
</table>

基于该指标体系，本文以决策单元包含中国 29
个省市区，由于西藏、广东、澳门、香港、台湾数据缺
少，因此不做考虑，样本区间为 2014 年－2018 年。
2.2 超效率 DEA 模型
考虑到存在多个决策单元呈现有效状态时，传统 DEA 模型测度的生产效率无法对有效的决策单元做进一步排序，为了进一步鉴别这些有效决策单元之间的效率大小问题，因此采用超效率 DEA 模型，使 DEA 有效的决策单元生产前沿面后移，同时保持 DEA 无效的决策单元生产前沿面保持不变。超效率 DEA 模型的数学表达式如式 (1) 所示。

\[
\min \left[\theta - \varepsilon \left(\sum_{i=1}^{n} s_i^+ + \sum_{i=1}^{m} s_i^- \right) \right] \\
 s.t. \sum_{i=1}^{n} X_i \lambda_i = 0, Y_i s_i = Y_i \\
 \lambda_i \geq 0; i = 1, 2, \ldots, k-1, k+1, \ldots, n; s_i \geq 0; i = 1, 2, \ldots, n.
\]

(1)

2.3 Malmquist 生产率指数法
在生产效率的测度的基础上，为了进一步了解各省市综合生产率的动态变化趋势，本文采用 Malmquist 生产率指数法对 2014–2018 年中国 29 个省市区生产投入产出面板数据进行动态分析。由于分别参照两个时期的前沿计算的 M 指数不一定相等，所以根据 Fare(1994)的定义，采用其及几何平均值作为被评价决策单元的 MI，其数学表达式如式 (2) 所示：

\[
M_i(x^{r+1}, y^{r+1}, x^r, y^r) = \frac{D_i(x^{r+1}, y^{r+1})}{D_i(x^r, y^r)} \times \frac{D_i(x^{r+1}, y^{r+1})}{D_i(x^r, y^r)}
\]

(2)

其中，E(x^r, y^r) 和 D(x^r, y^r) 分别为以第 r 期为技术基准期时，第 t 期和第 t+1 期决策单元与技术前沿面的距离函数。

采用 FGLR 分解法，Malmquist 生产效率指数可分解为技术效率变化和技术效率变化两部分，即

\[
Effch = Techch \times Pech.
\]

(3)

采用 FGNZ 分解法，技术效率变化又可进一步分解为技术效率变化和规模效率变化两部分，即

\[
Effch = Pech \times Sech.
\]

(4)

所以上述 Malmquist 指数可以分解为

\[
MI = Pech \times Sech.
\]

3 中国省际高技术产业创新效率评价
3.1 基于 Pearson 相关系数的指标“同向性”检验
运用 DEA 模型对中国省际高技术产业进行生产效率评价之前，需要验证之前建立的指标体系中投入项与产出项是否满足“同向性”假设。本文采用 Pearson 相关系数检验方法分别对 2014–2018 年中国 29 个省市区各投入变量与产出变量的相关性进行分析，结果如表 2 所示。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>研发人员数</td>
<td>相关性 0.931 8*</td>
<td>相关性 0.930 5*</td>
<td>相关性 0.935 8*</td>
<td>相关性 0.969 3*</td>
</tr>
<tr>
<td>显著性 (双尾)</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td>0.000 0</td>
</tr>
<tr>
<td>研发投入</td>
<td>相关性 0.931 8*</td>
<td>相关性 0.930 5*</td>
<td>相关性 0.935 8*</td>
<td>相关性 0.969 3*</td>
</tr>
<tr>
<td>显著性 (双尾)</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td>0.000 0</td>
</tr>
<tr>
<td>新产品开发投入</td>
<td>相关性 0.932 4*</td>
<td>相关性 0.971 4*</td>
<td>相关性 0.982 5*</td>
<td>相关性 0.983 2*</td>
</tr>
<tr>
<td>显著性 (双尾)</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td>0.000 0</td>
</tr>
</tbody>
</table>

表 2 2014—2018 年省市高技术产业创新投入与产出的 Pearson 相关系数
续表 2

<table>
<thead>
<tr>
<th>研发人员数</th>
<th>2018年</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>相关性</td>
<td>0.939 8*</td>
<td>0.978 3*</td>
<td>0.759 4*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>显著性 (双尾)</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td>0.000 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

研发投入	2018年				
相关性 (双尾)	0.931 8*	0.987 4*	0.787 2*		
显著性	0.000 0	0.000 0	0.000 0		

新产品开发投入	2018年				
相关性	0.932 0*	0.977 4*	0.842 8*		
显著性 (双尾)	0.000 0	0.000 0	0.000 0		

注：*表示在置信度（双尾）为 0.95 时相关性是显著的。

由 Pearson 相关性检验结果可知，本文选取的三项生产投入变量与生产产出变量均呈“正向”相关，且在 5% 的显著性水平下显著，说明本文构造的效率评价指标体系符合 DEA 模型的“同向性”原理。

3.2 基于超效率 DEA 模型的动态分析

本文侧重从研发投入角度，同时考虑到不同省份区市经济发展水平存在差异以及高技术产业的规模不同，采用 Super-BCC-I 模型，对 2014－2018 年中国 29 个省区市进行静态效率分析。应用 EMS1.3 软件测算得到中国各省市高技术产业创新效率如表 3 所示。

表 3 超效率 DEA 模型的生产效率测算结果

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>北京</td>
<td>1.23</td>
<td>1.18</td>
<td>1.01</td>
<td>0.83</td>
<td>0.97</td>
<td>1.04</td>
<td></td>
<td>1.11</td>
</tr>
<tr>
<td>天津</td>
<td>1.14</td>
<td>0.66</td>
<td>0.82</td>
<td>0.62</td>
<td>0.66</td>
<td>0.78</td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>河北</td>
<td>0.46</td>
<td>0.42</td>
<td>0.48</td>
<td>0.47</td>
<td>0.47</td>
<td>0.46</td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>山西</td>
<td>0.69</td>
<td>1.14</td>
<td>1.86</td>
<td>1.15</td>
<td>0.67</td>
<td>1.10</td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>内蒙古</td>
<td>0.59</td>
<td>0.45</td>
<td>0.58</td>
<td>2.08</td>
<td>1.21</td>
<td>0.98</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>辽宁</td>
<td>0.61</td>
<td>0.79</td>
<td>1.04</td>
<td>0.85</td>
<td>0.82</td>
<td>0.82</td>
<td></td>
<td>0.82</td>
</tr>
<tr>
<td>吉林</td>
<td>0.56</td>
<td>0.43</td>
<td>0.49</td>
<td>0.44</td>
<td>0.54</td>
<td>0.49</td>
<td></td>
<td>0.49</td>
</tr>
<tr>
<td>黑龙江</td>
<td>0.53</td>
<td>0.50</td>
<td>0.39</td>
<td>0.64</td>
<td>0.53</td>
<td>0.53</td>
<td></td>
<td>0.53</td>
</tr>
<tr>
<td>上海</td>
<td>2.63</td>
<td>2.36</td>
<td>2.55</td>
<td>2.49</td>
<td>2.45</td>
<td>2.50</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>江苏</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td>5.00</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>浙江</td>
<td>1.06</td>
<td>1.11</td>
<td>1.04</td>
<td>0.92</td>
<td>0.95</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>安徽</td>
<td>1.24</td>
<td>1.35</td>
<td>1.31</td>
<td>1.26</td>
<td>1.19</td>
<td>1.27</td>
<td></td>
<td>1.27</td>
</tr>
<tr>
<td>福建</td>
<td>0.68</td>
<td>0.67</td>
<td>0.74</td>
<td>0.74</td>
<td>0.65</td>
<td>0.69</td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>江西</td>
<td>0.78</td>
<td>1.04</td>
<td>0.94</td>
<td>1.06</td>
<td>0.93</td>
<td>0.95</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>山东</td>
<td>0.79</td>
<td>0.94</td>
<td>1.05</td>
<td>1.16</td>
<td>1.30</td>
<td>1.05</td>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>河南</td>
<td>2.59</td>
<td>3.16</td>
<td>2.86</td>
<td>2.80</td>
<td>3.04</td>
<td>3.04</td>
<td></td>
<td>3.04</td>
</tr>
<tr>
<td>湖北</td>
<td>0.42</td>
<td>0.55</td>
<td>0.78</td>
<td>0.74</td>
<td>0.86</td>
<td>0.67</td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>湖南</td>
<td>0.73</td>
<td>0.74</td>
<td>0.76</td>
<td>0.67</td>
<td>0.78</td>
<td>0.74</td>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td>广西</td>
<td>0.63</td>
<td>0.70</td>
<td>0.93</td>
<td>1.25</td>
<td>2.13</td>
<td>1.13</td>
<td></td>
<td>1.13</td>
</tr>
<tr>
<td>海南</td>
<td>1.08</td>
<td>1.13</td>
<td>0.64</td>
<td>0.51</td>
<td>0.64</td>
<td>0.66</td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>重庆</td>
<td>2.52</td>
<td>2.16</td>
<td>1.20</td>
<td>1.25</td>
<td>1.35</td>
<td>1.56</td>
<td></td>
<td>1.56</td>
</tr>
<tr>
<td>四川</td>
<td>1.10</td>
<td>1.10</td>
<td>1.13</td>
<td>0.95</td>
<td>0.88</td>
<td>1.03</td>
<td></td>
<td>1.03</td>
</tr>
<tr>
<td>贵州</td>
<td>0.78</td>
<td>0.69</td>
<td>0.61</td>
<td>0.67</td>
<td>0.67</td>
<td>0.73</td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>云南</td>
<td>0.61</td>
<td>0.45</td>
<td>0.67</td>
<td>0.63</td>
<td>0.57</td>
<td>0.59</td>
<td></td>
<td>0.59</td>
</tr>
<tr>
<td>陕西</td>
<td>0.29</td>
<td>0.33</td>
<td>0.40</td>
<td>0.44</td>
<td>0.45</td>
<td>0.38</td>
<td></td>
<td>0.38</td>
</tr>
<tr>
<td>甘肃</td>
<td>0.65</td>
<td>0.62</td>
<td>0.68</td>
<td>0.72</td>
<td>0.57</td>
<td>0.65</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>青海</td>
<td>2.43</td>
<td>4.83</td>
<td>2.17</td>
<td>2.24</td>
<td>1.63</td>
<td>2.86</td>
<td></td>
<td>2.86</td>
</tr>
<tr>
<td>宁夏</td>
<td>0.77</td>
<td>0.63</td>
<td>0.92</td>
<td>1.08</td>
<td>0.89</td>
<td>0.86</td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>新疆</td>
<td>1.86</td>
<td>3.60</td>
<td>1.01</td>
<td>0.76</td>
<td>2.00</td>
<td>1.85</td>
<td></td>
<td>1.85</td>
</tr>
</tbody>
</table>

| 平均生产率 | 1.19 | 1.29 | 1.21 | 1.18 | 1.23 | 1.22 |

由超效率 DEA 模型的建模结果可知，从截面数据角度来看，2014－2018 年中国 29 个省市区的平均生产效率均大于 1，说明我国总体高技术产业创新生产效率水平较高，高技术产业依靠研发人员
和研发投入等技术要素驱动产业发展效益明显。

从时间序列数据角度来看，有13个省份年均生产效率有效，约占所有省市区的44.8%，剩下55.2%的省份都是生产效率无效的。其中，天津（0.78）、河南
(0.46)、吉林（0.49）、黑龙江（0.53）、福建（0.69）、湖北
(0.67)、湖南（0.66）、贵州（0.73）、云南
(0.59)、陕西（0.38）、甘肃（0.65）共12个省的年平均生产率低于0.8，说明我国高新技术产业创新生产效率
存在较大的空间差异。

3.3 基于Malmquist 生产率指数法的动态分析

由2014-2018年中中国29个省市区的年均
Malmquist 指数测算和分解可知，从整体上看，我
国高新技术产业创新效率的增长率为4%，其中主要依
靠生产技术进步和合理的资源配置。

表4 2014-2018年中国29个省市区的年均
Malmquist 指数和分解

<table>
<thead>
<tr>
<th>省份</th>
<th>Malmquist 生产率指数（tfp）</th>
<th>技术效率变化（eff）</th>
<th>技术效率变化（tech）</th>
<th>实际效率变化（pct）</th>
<th>规模效率变化（sec）</th>
</tr>
</thead>
<tbody>
<tr>
<td>北京</td>
<td>1.00</td>
<td>0.99</td>
<td>1.04</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>天津</td>
<td>0.90</td>
<td>0.93</td>
<td>0.98</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>河北</td>
<td>1.04</td>
<td>1.02</td>
<td>1.05</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>山西</td>
<td>0.92</td>
<td>1.05</td>
<td>0.97</td>
<td>1.03</td>
<td>1.01</td>
</tr>
<tr>
<td>内蒙古</td>
<td>1.47</td>
<td>1.31</td>
<td>1.07</td>
<td>1.20</td>
<td>1.10</td>
</tr>
<tr>
<td>辽宁</td>
<td>1.04</td>
<td>1.03</td>
<td>1.02</td>
<td>1.09</td>
<td>0.96</td>
</tr>
<tr>
<td>吉林</td>
<td>1.07</td>
<td>1.02</td>
<td>1.03</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>黑龙江</td>
<td>1.10</td>
<td>1.03</td>
<td>1.05</td>
<td>1.10</td>
<td>1.08</td>
</tr>
<tr>
<td>上海</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>江苏</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>浙江</td>
<td>0.98</td>
<td>0.94</td>
<td>1.09</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>山东</td>
<td>0.94</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>福建</td>
<td>1.01</td>
<td>0.98</td>
<td>1.04</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>江西</td>
<td>0.97</td>
<td>1.01</td>
<td>1.03</td>
<td>1.05</td>
<td>0.98</td>
</tr>
<tr>
<td>广东</td>
<td>1.11</td>
<td>1.08</td>
<td>1.03</td>
<td>1.06</td>
<td>1.02</td>
</tr>
<tr>
<td>湖北</td>
<td>0.97</td>
<td>1.00</td>
<td>0.97</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>湖南</td>
<td>1.15</td>
<td>1.15</td>
<td>1.01</td>
<td>1.20</td>
<td>0.99</td>
</tr>
<tr>
<td>广西</td>
<td>0.99</td>
<td>0.98</td>
<td>1.03</td>
<td>1.02</td>
<td>0.96</td>
</tr>
<tr>
<td>广东</td>
<td>1.23</td>
<td>1.14</td>
<td>1.10</td>
<td>1.13</td>
<td>1.01</td>
</tr>
<tr>
<td>海南</td>
<td>0.72</td>
<td>0.73</td>
<td>1.05</td>
<td>0.94</td>
<td>0.81</td>
</tr>
<tr>
<td>重庆</td>
<td>0.91</td>
<td>0.97</td>
<td>0.93</td>
<td>1.00</td>
<td>0.97</td>
</tr>
<tr>
<td>四川</td>
<td>0.93</td>
<td>0.91</td>
<td>1.07</td>
<td>0.97</td>
<td>0.94</td>
</tr>
<tr>
<td>贵州</td>
<td>1.05</td>
<td>1.01</td>
<td>1.07</td>
<td>1.03</td>
<td>0.97</td>
</tr>
<tr>
<td>云南</td>
<td>1.08</td>
<td>1.03</td>
<td>1.07</td>
<td>1.02</td>
<td>1.01</td>
</tr>
<tr>
<td>陕西</td>
<td>1.14</td>
<td>1.08</td>
<td>1.09</td>
<td>1.12</td>
<td>0.96</td>
</tr>
<tr>
<td>甘肃</td>
<td>0.96</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>青海</td>
<td>1.46</td>
<td>1.36</td>
<td>1.02</td>
<td>1.00</td>
<td>1.36</td>
</tr>
<tr>
<td>宁夏</td>
<td>1.14</td>
<td>1.20</td>
<td>0.99</td>
<td>1.06</td>
<td>1.12</td>
</tr>
<tr>
<td>新疆</td>
<td>1.04</td>
<td>1.08</td>
<td>1.00</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>平均值</td>
<td>1.04</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.00</td>
</tr>
</tbody>
</table>

表5 2014-2018年中国29个省市区各年平均
Malmquist 指数和分解

<table>
<thead>
<tr>
<th>时期</th>
<th>Malmquist 生产率指数（tfp）</th>
<th>技术效率变化（eff）</th>
<th>技术效率变化（tech）</th>
<th>实际效率变化（pct）</th>
<th>规模效率变化（sec）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2015</td>
<td>0.96</td>
<td>0.93</td>
<td>1.05</td>
<td>1.00</td>
<td>0.94</td>
</tr>
<tr>
<td>2015-2016</td>
<td>1.09</td>
<td>1.11</td>
<td>0.99</td>
<td>1.10</td>
<td>1.01</td>
</tr>
<tr>
<td>2016-2017</td>
<td>0.97</td>
<td>1.08</td>
<td>0.90</td>
<td>0.99</td>
<td>1.08</td>
</tr>
<tr>
<td>2017-2018</td>
<td>1.15</td>
<td>1.02</td>
<td>1.15</td>
<td>1.04</td>
<td>0.98</td>
</tr>
<tr>
<td>平均值</td>
<td>1.04</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.00</td>
</tr>
</tbody>
</table>

就省份而言，河北（1.04）、内蒙（1.47）、辽宁
(1.04)、吉林（1.07）、黑龙江（1.10）、福建（1.01）
、山东（1.11）、湖 (1.15)、广西（1.23）、甘肃
(1.05)、云南（0.98）、陕西（1.14）、青海（1.63）
、宁夏（1.14）和新疆（1.04）15个省份的年均全要素
生产率指数大于1，即在全国范围内，近几年这些省份
的创新效率得到了提升，北京（1.00）保持不变，其
余省份的创新效率均呈下降趋势。进一步观察中
国各省份创新效率的分解结果可知，山西、上海、安
徽和湖南创新效率的下降是技术创新效率降低造
成的，江苏、江西、湖南创新效率的下降是由规模经
济规模引起的，浙江和四川创新效率的降低是由创新
资源配置不合理和生产规模不足造成的，甘肃
创新效率降低是由于技术落后和创新资源配置不
合理共同造成的；而生产技术、创新资源配置利用
能力和规模经济这三个因素的共同作用制约了天
津创新效率的提高。

由2014-2018年中国29个省市区各年的平均
Malmquist 指数和分解结果可知，Malmquist 生产
率指数在2014-2015年小于1，主要是由于规模经
济未能充分发挥作用；在2015-2016年Malmquist
生产率指数大于1，主要是由于创新资源合理配置
和创新投入规模扩大带动的；Malmquist 生产率指
数在2016-2017年小于1，主要是由于技术创新效
率降低造成的；在2017-2018年Malmquist 生产率
指数大幅增长，主要是由于技术水平得到了大幅
提升。

4 结论及对策

4.1 研究结论

本文基于中国29个省市区2014-2018年高技
术产业的面板数据，综合采用超效率DEA 模型和
Malmquist 指数法，对各省市生产效率进行测算和
分解，测评我国省际间高技术产业创新投入和创新
产出的绩效和相对效率。具体的结论如下：第一，通过超效率 DEA 模型对 29 个省区市高技术产业生产效率的静态分析结果可知，我国总体高技术产业创新生产效率水平较高，高技术产业依靠研发人员和研发投入等技术要素推动产业发展效益明显，但是超过一半的省市区要素投入结构缺乏合理性，创新生产效率存在较大的区域差异；第二，通过 Malqquist 指数法对中国 29 个省区市高技术产业创新能力进行动态综合评估，发现我国高技术产业创新能力近五年不够稳定，先快速增长，之后下降，再快速增长。2016—2017 年全要素生产率下降的主要原因是技术创新水平不足造成的，但 2016—2018 年全要素生产率又快速增长则主要得益于技术水平的快速提高；最后，我国不同省市区的创新效率不足是由不同的原因造成的，技术创新、创新资源的配置以及规模经济等均会对高技术产业的创新效率造成影响，其中，大多数省份都存在规模经济未能充分发挥，从而影响创新效率增长的问题。

4.2 对策建议

综上所述，本文提出以下几个方面的对策建议：

1) 促进高技术产业规模效率的提升。从创新过程的角度看，创新过程分为科技创新成果形成、商业价值形成与规模经济效益形成三个阶段，高技术产业规模的扩大，可以带来两方面的优势：其一，劳动生产效率的提升；其二，规模的外部经济性。大多数省份存在高技术产业规模效率未能充分发挥的问题。对于这些科技创新能力强的省份，比如浙江、江苏、安徽、福建等东部地区，在提高创新投入基础上，应该进一步加强高技术产业创新能力的管理水平，以实现创新资源的优化配置。

2) 加大高技术产业产学研合作力度。许多省份创新资源并没有得到合理的配置和利用。其中的原因非常复杂，可以借鉴国际上广泛实施的业界和学界密切合作的经验，通过产学研合作模式提升创新资源的合理配置。因此，未来高技术产业创新效率的提升，要切实推进高校、科研院所与企业之间进行资源整合，合作创新。

3) 加深东部和中部、西部省份，地区之间研发人员、生产技术的交流。虽然西部大多数地区的创新生产效率水平较高，但原因是由于其整个创新能力规模较小。因此，随着未来中西部创新投入力度的加大，应当鼓励促进东部和中西部地区的创新交流和合作。

4) 通过数字化提高高技术企业的知识保障和共享。除了对企业内部组织形式进行扁平化改革，给予研发人员更大的创造空间，还应当加速数字化转型进程，利用数字化形式提高研发人员的知识保障和共享工作。研发人员的价值创造在企业价值链中扮演着关键的角色，企业要为研发人员的创造过程和保障。虽然数字化大都只是被作为管理技术被应用，但高技术企业应当利用数字化进程，构建研发产品的数字孪生体，推动研发进程和资源共享，为创新研发提供精准的决策依据。

5) 重视营销策略，实现产销平衡。高技术产品蕴含着最新的技术成果，由于存在着一定的认知偏差，广大消费者群体往往对新技术出现的反应比较迟钝。应当积极向消费者展示新技术产品能够给消费者带来新的价值，重视品牌营销，不仅仅重视产品本身的推广，更要重视塑造消费者的习惯，让新产品走进更多消费者的生活。同时注重收集客户的反馈信息，生产出更多适销对路的产品。

参考文献

Research on the Innovation Efficiency Evaluation of China’s Interprovincial High-Tech Industries
—Based on super-efficiency DEA model and Malmquist index method

ZHANG Yue-ming, JIANG Yuan-tao
(School of Economics and Management, Shanghai Maritime University, Shanghai 201306, China)

Abstract: Based on the panel data of high-tech industries of 29 provinces, autonomous regions and municipalities in China from 2014 to 2018, the super-efficiency DEA model was first used to calculate the production efficiency of each province, and then the DEA-Malmquist model was constructed to calculate and decompose the comprehensive productivity index of each province. The results show that the overall level of innovation efficiency of China’s high-tech industries is relatively high, but more than half of the provinces and municipalities have unreasonable factor input structure, which is mainly distributed in the central and western regions, and the innovation efficiency has great regional differences. The average total factor productivity index of China’s high-tech industries is greater than 1. Many provinces suffer from low scale efficiency, resulting in n-type callback vibration of innovation efficiency. Technological progress and technical efficiency are the main driving forces for total factor productivity improvement. Therefore, in order to further improve the innovation efficiency of China’s high-tech industry, attention should be paid to maintain the technical level and efficiency of high-tech industry, especially to optimize the allocation of high-tech industry’s scientific and technological resources and to improve the management level of high-tech industry’s innovative resources.

Key words: high-tech industry, innovation efficiency, super efficiency DEA model, Malmquist index method